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Mitomycin C (MC; 1) is a natural antitumor antibiotic, used 
in anticancer chemotherapy. Upon reductive activation it 
alkylates and cross-links DNA.1 The resulting DNA monoad-
ducts and bisadducts have been structurally elucidated.2 MC is 
the prototype bioreductive alkylating agent as its reactions with 
DNA and nucleophiles in general are absolutely dependent on 
reduction of its quinone under physiological conditions.la'3 

Reduction of the quinone induces spontaneous elimination of 
CH3OH from the 9/9a positions (3). This, in turn, activates the 
two "masked" alkylating functions of MC at the Cl (aziridine) 
and ClO (carbamate) positions, resulting in a successive incor­
poration of two nucleophiles (Scheme 1) .2 There is ample evidence 
that the cytotoxicity and antitumor activity of MC in vivo are 
also dependent on reduction.4'5 Resistance of tumor cells to MC 
has been related frequently to deficient reductase activity.5 Thus, 
the requirement for enzymatic reduction of MC is a potentially 
limiting factor in the therapeutic efficiency of the drug. 

We report a novel, nonenzymatic bioreductive activation 
mechanism of a class of designed MC analogs carrying a disulfide 
group in their quinone side chain. Two of these (4; BMY-250676 

and KW-24197) (Chart 1) are superior to MC as anticancer 
agents; both are under clinical trials. Each was designed6-7 on 
the basis of the hypothesis that their disulfide group may mediate 
nonenzymatic reduction of the quinone, initiated by thiols, e.g., 
glutathione (GSH) (Scheme 2). We tested this hypothesis 
experimentally as follows. 

A series of disulfide analogs 4, monosulfide 5, and MC8 itself 
were incubated with 5 mM GSH in 50 mM Tris-HCl (pH 7.5) 
buffer at room temperature. Reductive activation of these 
mitomycins was monitored by a UV assay based on the conversion 
of the 7-aminomitosane chromophore (X1n,, ~ 370) to the 
chromophore of 7-aminomitosenes (Xmax ~ 320 nm) as a result 
of the reduction. u,1° As seen in Figure 1, MC was not reduced 
by GSH. However, all three group I disulfide analogs (4) were 
fully reduced in less than 2 h. In sharp contrast, the group II 
disulfide analogs (4) and the monosulfide 5 were unreduced even 
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after 25 h. The kinetic course of the reductions (Figure Id) was 
calculated from the UV spectral changes. 

Next, it was tested whether the GSH-initiated reduction 
activated the mitomycin derivatives to the DNA-cross-linking 
species (cf. Scheme 1). The mitomycins were incubated with a 
mixture of 1.2 jiM pBR322 DNA (linearized; 32P-labeled at the 
3' ends) and 120 fiM calf thymus DNA in the presence of 5 mM 
GSH or 0.08 mM dithiothreitol (DTT) in 20 mM Tris-HCl-1 
mM EDTA (pH 7.4) buffer for 1 h at room temperature. The 
DNA was then isolated and assayed for cross-links by a sensitive 
method.'' The results paralleled perfectly with the results of the 
reduction assay: group I disulfides in the presence of DTT or 
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Figure 1. UV assay of reduction of mitomycins by glutathione. The 
reduction mixtures (see text) were incubated in UV cells (1-cm path), 
and spectra were determined at 0-, 5-, 10-, 20-, 40-, 60-, and 120-min 
and 12- and 24-h reaction times, using a Varian Cary 3 spectrophotometer, 
(a) MC; (b) KW-2149; (c) n = 4 dimer; (d) kinetic plots calculated from 
the spectral changes at 370 min. 

GSH cross-linked the DNA (Figure 2b-f) while MC, the group 
11 disulfides, and monosulfide 5 were completely inactive (Figure 
2a,d,f). 

It is concluded from these results that reductive activation of 
the mitomycin system by GSH and DTT is dependent upon the 
presence of a disulfide function, linked to the 7-amino group of 
MC. Furthermore, the - ( C H 2 ) , - linker must be two carbons 
long (n = 2). This suggests a mechanism involving intramolecular 
electron transfer from the disulfide to the quinone as shown in 
Scheme 3 for BMY-25067. GSMnitiated disulfide exchange 
releases the free thiol (X), which then adds to the quinone,12 '3 

leading to the cyclic intermediate Y.14 Homolytic S-C bond 
cleavage gives the semiquinone anion radical Z, which is then 
reduced to the hydroquinone by excess GSH, accomplishing the 
reduction of the mitomycin to the activated, hydroquinone state.15 

This mechanism accounts for the n = 2 requirement since 
formation of the six-membered ring cyclic intermediate Y14 is 
favorable, in contrast to the cases of the n = 4 and n = 6 dimers 
(4) in which unfavorable eight- or 10-membered ring formation 
would be required. Consistent with a favorable intramolecular 
cyclization mechanism, external thiols (GSH or DTT) do not 
reduce the quinone directly, as seen by their lack of reaction with 
MC itself.16 Verification of this mechanism by characterizing 
stable end products and reactive intermediates is in progress. 

Drug activation by thiols is an important mechanism in the 
action of the enediyne antibiotics11 and other drugs.18 However, 
the thiol-induced activation of the mitomycin quinone occurs by 
a conceptually novel mechanism, i.e., by thiol-to-quinone electron 
transfer, as shown here. In a recent salient structure-activity 
relationship study' the n = 2 dimer (4) was found to be hundreds-
fold more cytotoxic to HeLa cells and more effective against 
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Figure 2. Gel electrophoretic assay of cross-linking of 32P-labeled pBR322 
DNA1' by MC and the disulfide and monosulfide analogs upon activation 
by thiols, (a-c) Complete system: Incubation mixture containing drug, 
DNA, and thiol; see text. Lanes: 1, control linear "P-labeled pBR322 
DNA; 2, same, heat-denatured; 3, complete system minus thiol; 4-9, 
complete system, with drug concentrations 5, 10, 20,40, 60, and 80 jiM, 
respectively, (a) Drug: MC. Thiol: DTT. (b) Drug: BMY-25067. 
Thiol: DTT. (c) Drug: KW-2149. Thiol: GSH. (d) Complete system: 
drug(2OMM), DNA(118 uM),GSH (5 mM);see text. Lanes 1-3: same 
as in a-c. Lanes 4-9: complete system; drugs are BMY-25067, KW-
2149, n = 2 dimer, n = 4 dimer, n = 6 dimer, and monosulfide 5, 
respectively, (e) Percent cross-linked DNA as a function of drug 
concentration, calculated from densitometric measurements of gel 
autoradiograms. Thiol: GSH. (0 Percent cross-linked DNA calculated 
from densitometric measurement of the autoradiogram in d. 

tumors in vivo than the higher members (n = 3-12) of the dimer 
homolog series or MC itself. This demonstrates that the self-
reductive (nonenzymatic) activation capability19 of the disulfides, 
described here, plays a role in their superior antitumor activity. 
Linking an RSS(CH2)2NH substituent as a "self-reducing" device 
to the quinone of a bioreductive alkylating agent might be useful 
in general in the design of new antitumor drugs. 
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